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Abstract We present a new construction approach for symmetric lifted B-spline
wavelets on irregular polygonal control meshes defining two-manifold
topologies. Polygonal control meshes are recursively refined by sta-
tionary subdivision rules and converge to piecewise polynomial limit
surfaces. At every subdivision level, our wavelet transforms provide an
efficient way to add geometric details that are expanded from wavelet
coefficients. Both wavelet decomposition and reconstruction operations
are based on local lifting steps and have linear-time complexity.
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1. INTRODUCTION

Biorthogonal wavelet transforms, see Stollnitz et al. (1996), are used
for compression of scientific data, progressive transmission, hierarchical
modeling, and solving diverse numerical problems. Wavelets are useful
in computer-aided geometric design (CAGD) to represent surfaces at
different levels of resolution for visualization and design purposes. Highly
complex functions, like flow fields or terrain models, are transformed into
a sparse wavelet basis within linear computation time. Quantization
and arithmetic coding of wavelet coefficients leads to high compression
~ rates at the expense of relatively small reconstruction errors. Lossless
compression is possible for data represented in form of integer or finite-
precision samples. :

A challenge of recent interest is the construction of wavelets on non-
planar, two-manifold domain topologies, like spherical domains, see
Schroder/Sweldens (1995), or general two-manifolds of arbitrary genus,
see Lounsbery et al. (1997) and Stollnitz et al. (1996). We present
a new construction approach generalizing biorthogonal tensor-product
wavelets defined on planar domains to subdivision surfaces of arbitrary
tpology. The novelty of our wavelet approach is that both, the transform
and its inverse are computed by loacl operations. Previous wavelet con-
structions for smooth, non-interpolating subdivision surfaces require the
solution of a sparse linear system for computing the wavelet transform,
see Stollnitz et al. (1996), whereas the inverse transform is computed
locally.

Subdivision surfaces are defined by polygonal base meshes that are
recursively subdivided according to regular refinement rules converging
to continuous limit surfaces. The first subdivision surfaces reproduc-
ing piecewise polynomials were described by Catmull/Clark (1978) and
Doo/Sabin (1978). Surface boundaries and sharp features can be rep-
resented by modified subdivision and fitting rules, see Biermann et al.
(2000). Our approach is based on wavelet lifting, introduced by Sweldens
(1996), which simplifies the construction of basis functions, accelerates
the computation of the wavelet transform, and is suitable for the use of
integer arithmetic to obtain lossless compression, see Bertram (2000).

2. . WAVELET CONSTRUCTION

Wavelets have their roots in signal processing. A function is trans-
formed by recursively separating details, corresponding to the highest.
frequency band, from the remaining lower frequencies. In geometric
modeling applications, this filtering corresponds to a fitting operation F
projecting a function onto a smaller space spanned by coarser (lower-
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frequency) basis functions.  The removed details, i.e., the differences
between the fit and the original function, are transformed into wavelet
coefficients by a compaction-of-difference operator C. This process is re-
cursively applied, resulting in multiple levels of resolution, see Figure 1.
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Figure I  Multiresolution modeling paradigm of a wavelet transform. The fitting op-
erator F provides a coarser approximation of the data and the operator C compactly
stores the geometric details removed by F.

The operators F and C are both linear transforms reducing the num-
ber of coefficients. Neither F, nor C have an inverse, when computed
separately. The combination of F and C, however, is inverted by a
subdivision operator S and an expansion-of-difference operator E. In
particular, F is the inverse of S and C is the inverse of E.-

We start with constructing wavelets in one dimension by defining the
operators S and E. These operators already determine the shape of
the basis functions (wavelets representing details and scaling functions
representing the individual levels of resolution). The construction is done
in a way such that the filtering operations for S and E are factorized
into smallest possible lifting operations that are symmetric and involve
only three coefficients at a time, see Figure 2. There can be an arbitrary
number of these lifting steps. Examples for linear and cubic B-spline
wavelet constructions are provided in the Appendix.
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Figure 2 Factoring the computation of § and E into small lifting steps. Circles
represent individual coefficients at certain stages of the transform, whereas arrows
denote the dependencies.
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On surfaces defined by regular, rectilinear control meshes, our lifted
one-dimensional wavelet transform is applied independently to the rows
and columns of the meshes, resulting in tensor-product basis functions.
The number of control points is quadrupled in every subdivision step.
This subdivision process is generalized to irregular base meshes by a
subdivision hierarchy like Catmull-Clark surfaces, illustrated in Figure 3.

Figure 83 Regular subdivision of a rectilinear and an irregular mesh by inserting new
- vertices for every edge and for every polygon.
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Figure 4 Tensor-product approach for one lifting operation. The coefficients in every
second row/column are modified using values from the neighboring rows/columns.
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Figure 5 Same lifting operation as in Figure 4, but computed in different order.
The coefficient located in the middle {corresponding to one out of four coefficients
in a regular mesh) is updated only once by adding a linear combination of its eitht
neighbors. '
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On a regular rectilinear grid, the tra,rfxsform is independent of the order
in which the operations are applied with respect to the canonical direc-
tions. Thus, we can compute every 1nd1v1dual lifting operation for both
directions subsequently, which is shown in Figure 4. Instead of updat-
ing the middle control point twice (for every canonical direction), we can
change the order of computation such that every control point is updated
only once, see Figure 5. The modified computation can be generalized to
irregular base meshes. If the middle control point is extraordinary, i.e.,
it has n # 4 incident edges, then we multiply the weights for its update
by 2 such that the total weight of points added remains independent of
the va.lence n. The entire wavelet transform is computed by generalizing
every individual lifting operation in this way.

The two-dimensional scaling functlons can be obtained by settmg the
ordinate of only one control point to:one and by applying the subdi-
vision operator S ad infinitum. The wavelets corresponding to control
points located on edges or polygons of a certain-resolution mesh are de-
fined by applying operator E one time at this level and then operator
S ad infinitum. Boundary curves and sharp feature lines are treated
differently by applying the lifting operations of the one-dimensional case
along the corresponding edges in the| mesh for all vertices located on
these edges. Examples for recurswely, generated basis functions are il-
lustrated in Figure 6. |

We note that our mesh subdivision strategy generates only quadrilat-
erals and the number of extraordina.r’y vertices remains constant after
the first subdivision on an irregular me:ash. Thus, most of the basis func-
tions are located in rectilinear mesh regions and are tensor products. In
the case of subdivision rules generating piecewise polynomials by dyadic
refinement, see Duchaineau (1996), the generated basis functions are
composed of polynomial patches that can be evaluated at arbitrary pa-
rameter values, even in the nelghborhood of extraordinary points where
the patches become smaller and smaller, see Stam (1998). The degree
of continuity of subdivision surfaces a,t| extraordinary points depends on
the eigenstructure of local subdivision matrices. The limit surfaces of
our bicubic subdivision scheme are C» -continuous at these points, see
Peters/Reif (1998).  We have constructed wavelets based on linear, cu-
bic, and quintic B-spline s.ubdivision,i see Bertram (2000). A variety
of different symmetric wavelets can b;e constructed and generalized to
irregular meshes using this approach. {
~ So far, we have only defined the mverse wavelet transform. The op-

erators F and C for the wavelet transform are obtained by applying the
inverse of every individual lifting step in reverse order. The input of the
wavelet transform is a base mesh w1th subdivision hierarchy and valid

1
i
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Figure 6 Generalized tensor-product basis functionsresulting from generalized bicu-
bic B-spline subdivision. a) scaling function; b) wavelet located on edge; c) wavelet
located on polygon; d) wavelet with a sharp feature.

control points on a certain (finest) level of subdivision. The transform
recursively computes a set of coarser approximation levels represent-
ing the differences between consecutive levels in form of sets of sparse
wavelet coefficients. The coarsest level is defined by the control points
of the irregular base mesh.

3. EXAMPLES

Our wavelet constructions for surfaces defined by irregular base
meshes are applicable to a variety of problems. Some of the most signif-
icant applications for our technique are:

s Compression and progressive transmission of complex geome-
tries, like isosurfaces extracted from computatwnal fluid dynamics
(CFD) simulations.

» View-dependent visualization of surfaces and of functions defined
on surfaces, like texture maps, bump maps, and opacity. Geo-
metric detail can be added locally to a surface, providing highest
resolutions in visible areas close to the view point. An adaptive
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mesh structure supporting this kind of local refinement was pre-
sented by Duchaineau et al. (1997).

= Sparse representation of functions defined on tessellated domains
for scattered data approximation or radiosity solutions.
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Figure 7 Generalized bilinear B-spline wavelet transform for a tessellated image. a)
image resampled on subdivided tessellation (217921 samples); b) initial tessellation of
image region; c) reconstruction from 1 percent of wavelet coefficients; d) reconstruc-
tion from 0.1 percent (218 coefficients).

An example for generalized bilinear B-spline wavelets defined on a
tessellation is shown in Figure 7. Starting with a coarse tessellation of
_the “Cygnus Loop” Hubble image, courtesy of NASA, we have recur-
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sively subdivided this tessellation seven times and re-sampled the image
on the resulting mesh (217921 samples). Figure 7 shows reconstruc-
tions obtained by considering wavelet coefficients whose magnitudes are
greater than a certain threshold. For more details about wavelets defined
on tessellations we refer to Bertram et al. (2000a). ’

Figure 8 Generalized bicubic B-spline wavelets representing an isosurface. a) Local
view of the isosurface resampled on a subdivided base mesh (1187277 control points);
b) patches corresponding to base-mesh polygons shown in four different colors; c)
reconstruction from 5 percent of wavelet coefficients; d) reconstruction from contrel
points on base mesh (1.6 percent of coefficients, 19527 points).

We have also developed an algorithm for the automatic generation
of base meshes with subdivision hierarchy for isosurfaces, see Bertram
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et al. (2000b). The algorithm starts with a fine triangulation that is
simplified to a coarse mesh by collapsing edges. The base mesh is a
coarse, simplified mesh with some triangles merged to polygons. We
_ recursively subdivide the base mesh, project its control points onto the
original high-resolution isosurface, and relax the mesh after every subdi-
vision step using Laplacian smoothing. We have applied this algorithm
to an isosurface extracted from a high-resolution turbulent hydrodynam-
ics simulation (Richtmeyer-Meshkov instability), courtesy of Lawrence
Livermore National Laboratory. We have applied our generalized bicu-
bic wavelet transform to the sampled isosurface (consisting of 1187277
samples at the third subdivision level) and reconstructed the surface
from smaller sets of coefficients selected by thresholding, see Figure 8.
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Appendix -

We briefly summarize the one-dimensional construction for linear and
cubic B-spline wavelets with two vanishing moments, shown in Flgure 9.
The corresponding scaling functions are B-splines.

Sta.rtmg with a control polygon at resolution j + 1, defined by points
(:7 *1 (scaling function coefficients), the fitting operator F transforms

every second control point into a point of ¢/ defining a control polygon
for the next-coarser approximation at resolutlon j. The remaining points
in ¢} +1 are transformed by the compaction-of-difference operator C into

wavelet coefficients d;’ . This process is called decomposition or analysis,

defined as . _
d = h-2ud', , (L.1)
keZ ' :
& =Y ha g, (1.2)
kEZ

where [ and h-are finite discrete filters. The inverse process, called"
reconstruction or synthesis, is defined as

gt = > (k-2 d + hx-2 dl 7y, (1.3)

i€Z

where the filters [ and h are used to compute the subdivision operator
S and the expansion-of-difference operator E, respectively. These four
filters are shown in Table 1. :

A Ao

Figure 9 Linear and cubic B-spline wavelets.
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degree ho hi1  hi Io lx1 lxo lis
: 1 3 1 1
linear 1 -3 i i "8
. 3 1 5 5 3 3
cubic A | 3 i §® —F =
degree ho hx1  hiz his lo Ix1 lx2
linear 8 -1 -3 1 3
H 5 5 3 3 3 1 1
cubic 5§ ~8d "1 o4 i 2 8

Table 1 - Discrete decomposition and reconstruction filters for one-dlmensnonal linear
and cubic B-spline wavelets.

Instead of using formulae (1.1-1.3), we compute the wavelet trans-
forms by small and local lifting operations. These lifting operations
are more efficient to compute, and one can generalize them to arbi-
trary meshes in the surface case. For our linear B-spline wavelet, the
one-dimensional reconstruction formula is computed by two lifting op-
erations,

Cé = CZ _%(dj—l +dz)’
di = & +1(c+cy), and

;‘j + _ if k is even,
k de—l) /2 otherwise.

(1.4)

The one-dimensional reconstruction formula for our cubic B spline
wavelet requires three lifting operations and is defined as

¢ = §d -, +d),
cd = &+ (4 ),
¢ = + Hdiy+d), and 19)
" { 4 12 if k is even,
(;l"c = . herwi
(k—1)/2 otherwise.

The corresponding decomposition formulae are obtained by applying the
inverse of every individual lifting operation in reverse order.




